ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D.
- Juan Antonio Valverde Hernández
- hace 3 años
- Vistas:
Transcripción
1 UNIVERSIDAD DE PUERTO RICO FACULTAD DE ADMINISTRACION DE EMPRESAS INSTITUTO DE ESTADISTICA ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus, Ph.D.
2 Presentación Este curso ofrece al estudiante, la posibilidad de hacer análisis estadístico de una manera sencilla, mediante la manipulación de la Calculadora Gráfica TI 83 Plus. Aunque la tecnología portátil, Calculadora Gráfica TI 83 Plus, contribuye de manera efectiva en el proceso de enseñanza aprendizaje de la Estadística, se recomienda que el estudiante universitario considere la destreza adquirida como un aprendizaje de primera etapa, ya que cuando el futuro profesional se inserte en el mercado laboral desarrollará sus actividades y logrará objetivos como producto de la manipulación de computadoras; en esos momentos las destrezas en el uso de calculadoras portátiles será mínimo o nulo. La importancia del aprendizaje en la primera etapa radica en que se logra la lógica de trabajo necesaria para pasar al aprendizaje de segunda etapa, en la que se debe acceder al uso de computadoras y aprender a manipular algún programado estadístico, tales como: MINITAB, SAS, SPSS, R, entre otros. Si se logró dominar el aprendizaje de primera etapa, entonces muy fácilmente se podrá dominar el aprendizaje de segunda etapa. Es el deseo del autor que el presente manual Análisis Estadístico con Calculadora Gráfica TI 83 Plus, sea aprovechado en su máxima expresión y que contribuya a un mejor entendimiento de la Ciencia Estadística, para que su aplicación se convierta en herramienta fundamental del análisis de datos. 1
3 TECNICAS DE CONTEO Factorial de un número 5! = = 120 8! = = MATH PRB opción 4 Combinatoria 5! 2!! MATH PRB opción GENERACION DE NUMEROS ALEATORIOS Números enteros entre dos valores Generar 5 números enteros entre 12 y 15 MATH PRB opción 5 Generar 10 números enteros entre 200 y 220 Generar 200 números enteros entre 1200 y
4 Números aleatorios con distribución normal con media µ y desviación estándar σ Generar 10 números aleatorios con distribución normal con µ = 15 y σ = 8 Guardar estos números en una lista (L1) 1) MATH PRB opción 5 2) STO 2nd [ L1 ] Cómo ver esos números generados? STAT EDIT opción 1 Cómo borrar esos números de la memoria? STAT EDIT opción 4 CALCULO DE MEDIDAS ESTADISTICAS DE UN CONJUNTO DE DATOS Datos: Ingreso de datos 1) STAT EDIT opción 1 Ingresar los datos 2) 2nd [ QUIT ] 2
5 Cálculo de medidas 1) STAT CALC opción 1 2) 2nd [ L1 ] ENTER CALCULO DE PROBABILIDADES Distribución Binomial En una agencia bancaria, el 40% de los clientes tienen certificado bancario. Si se eligen 8 clientes al azar, cuál es la probabilidad de encontrar: a) Exactamente 6 clientes con certificados bancarios v.a. X = # de clientes con certificado bancario; p = 0.40; n = P ( X = 6) = 0.40 (1 0.40) = nd [ DISTR ] opción 0 b) A lo más 6 clientes tienen certificado bancario: P(X 6) 2nd [ DISTR ] opción A c) Al menos un cliente tiene certificado bancario: P(X 2) 2nd [ DISTR ] opción A 3
6 Distribución de Poisson En una inmobiliaria se ha determinado que el número promedio de casas vendidas en un día laborable es 1.6 casas/dia. Si el número de casas vendidas es una variable Poisson, calcule la probabilidad de que en un día cualquiera: a) Se vendan exactamente 4 casas: P(X = 4) En este caso t =1 y λ =1.6 μ = λ t = e 1.6 P ( X = 4) = = ! 2nd [ DISTR ] opción B b) Se venda entre 2 y 5 casas, inclusive: P(2 X 5) P(X=2) + P(X=3) + P(X=4) + P(X=5) 2nd [ DISTR ] opción C Distribución Normal Estándar Calcular: a) P(Z < 1.57) = 2nd [ DISTR ] opción 2 4
7 b) P(Z 1.04) = e) P( 0.23 Z 1.70) = f) Hallar el valor k, tal que: P(Z< k) = nd [ DISTR ] opción 3 Calcular 1) P(Z> 1.34) 2) P(Z> 2.1) 3) P(Z< 1.24) 4) P(1.1 < Z < 2.2) 5) P( 2 < Z < 1.85) 6) P( 2 < Z < 0.84) 5
8 En una empresa los pagos mensuales de empleados por trabajar en sobretiempo están distribuidas en forma normal con una media de $200 y una desviación estándar de $20, entonces la probabilidad de que un empleado, seleccionado al azar en esta empresa, tenga un pago mensual por sobretiempo a) Mayor de 240 dólares, es P(X 240) = P Z > 20 = P(Z 2.0) = 1 P(Z < 2.0) = = Distribución T de Student La variable aleatoria continua X tiene una distribución T de Student, con m grados de libertad, denotada por: v.a. ~ t, X ( m) gl El valor m es un número entero positivo que define a la distribución T Ejemplo Si X t(12) gl ~, calcular: 1) P(X < 2.179) = nd [ DISTR ] opción 5 6
9 2) P(X > 1.356) = 0.1 Ejercicios: Si X ~ t(18) gl Calcular la probabilidad: 1) P(X > 1.842) 2) P(X < 1.231) 3) P(X < 0.824) 4) P(X > 1.24) 5) P(X < 2.18) 6) P( 1.23 < X < 1.23) Distribución Ji Cuadrado La variable aleatoria continua X tiene una distribución Ji cuadrado, con m grados de 2 libertad, denotado por: v.a. X χ ~ ( m) gl El valor m es un número entero positivo que define a la distribución Ji cuadrado Si X χ, calcular: 2 ~ (12) gl 1) P(X > ) = nd [ DISTR ] opción 7 7
10 2) P(X < 11.34) = Ejercicios: Si X χ 2 ~ (25) gl Calcular la probabilidad: 1) P(X > ) 2) P(X < 5.231) 3) P(X < ) 4) P(15.23 < X < 31.23) Distribución F de Snedecor La variable aleatoria continua X tiene una distribución F de Snedecor, con a y b grados de libertad, denotada por: ~ X F( a, b) gl Los valores a y b son enteros positivos que definen a la distribución F Si X F(6,10) gl ~ 2nd [ DISTR ] opción 9 1) P(X > 2.10) =
11 Ejercicios: Si X ~ F(12,27) gl Calcular la probabilidad: 1) P(X > 1.842) 2) P(X < 0.231) 3) P(X < 1.824) 4) P(1.23 < X < 2.23) INTERVALOS DE CONFIANZA 1) Para una muestra de 81 habitantes de cierta población se obtuvo una estatura media de 167 cm. Por estudios anteriores se sabe que la desviación estándar de la estatura de la población es de 8 cm. Construir un intervalo de confianza para la estatura media de la población al 95% STAT TEST opción 7 Stats ENTER Calculate ENTER 9
12 2) En una muestra de 120 estudiantes que hicieron un examen se obtuvo una nota media de 5.6 y una desviación típica de 2.5. Calcula un intervalo de confianza para la nota media del examen al 95% STAT TEST opción 8 Stats ENTER Calculate ENTER 3) Una máquina fabrica piezas de precisión. En una muestra de 200 piezas inspeccionadas, han aparecido 10 piezas defectuosas. Hallar un intervalo del 95% de confianza para el parámetro proporción de piezas defectuosas. STAT TEST opción A Calculate ENTER 10
13 PRUEBA DE HIPOTESIS 1) El número de accidentes mortales en una ciudad es, en promedio, de 12 mensuales. Después de una campaña de señalización y mejoramiento de las vías urbanas se contabilizaron en 6 meses sucesivos: 8, 11, 9, 7, 10, 9 accidentes mortales. Fue efectiva la campaña? Ingresar los datos en la lista L1 STAT TEST opción 2 Data ENTER calculate ENTER 2) En una muestra de 200 piezas inspeccionadas, se encontró 10 piezas defectuosas. Se puede afirmar que la proporción de piezas defectuosas producidas por la fábrica es mayor del 8%? STAT TEST opción 5 Calculate ENTER 3) Una operación de ensamblaje de una planta industrial requiere que un empleado nuevo se someta a un período de entrenamiento de aproximadamente un mes para alcanzar su máxima eficacia. Se sugirió un nuevo método de entrenamiento y se llevó a cabo de una prueba para comparar el método nuevo con el procedimiento estándar. Dos grupos de empleados nuevos se entrenaron durante un período de tres semanas, un grupo de 8 usando 11
14 el nuevo método y un grupo de 9 siguiendo el procedimiento de entrenamiento estándar. Al final del período de tres semanas se observó el tiempo en minutos que le tomó a cada empleado ensamblar el dispositivo. Los resultados aparecen en la tabla. Procedimiento estándar Procedimiento nuevo Existe homogeneidad de varianzas de los tiempos en los dos procedimientos? Ingresar datos: Procedimiento estándar en L2 Procedimiento nuevo en L3 STAT TEST opción D Data ENTER Calculate ENTER Para elegir L2 y L3 2nd [ LIST ] 12
15 Presentan los datos suficiente evidencia que indique que el tiempo medio de ensamblaje al final del período de entrenamiento de tres semanas es menor para el nuevo método? STAT TEST opción 4 Data ENTER < ENTER YES ENTER Calculate ENTER Para elegir L2 y L3 2nd [ LIST ] 4) Un estudio se realiza para comparar el alquiler mensual de un apartamento de una habitación en la avenida A y en la avenida B de una ciudad. Una muestra de 35 apartamentos en la avenida A, proporcionó un alquiler promedio mensual de $370, con una desviación estándar de $30. Una muestra de 40 apartamentos en la calle B, demostró un valor promedio mensual de $380, con una desviación estándar de $12. Existe homogeneidad de varianzas de precios en las dos avenidas? STAT TEST opción D Stats ENTER Calculate ENTER 13
16 Se puede afirmar que el promedio de los alquileres de la Av. A, es menor que el promedio de alquiler de la Av. B? STAT TEST opción 4 Stats ENTER (completar datos) < ENTER Pooled NO ENTER Calculate ENTER Resultados 5) Se realizó un estudio sobre efectividad de un programa de seguridad industrial para reducir los accidentes que se traducen en pérdidas de tiempo. Los resultados, expresados en horas hombres perdidas por mes durante un periodo de un año, se tomaron en seis plantas antes y después de que se echara andar dicho programa de seguridad. El programa de seguridad fue efectivo? Planta Antes Después
17 Ingresar datos: Antes de aplicar el programa de seguridad en L1 Después de aplicar el programa de seguridad en L2 2nd [QUIT] L2 L1 L3 ENTER STAT TEST opción 2 Data ENTER calculate ENTER REGRESION LINEAL SIMPLE Los datos de la siguiente tabla representan las estaturas (X, cm) y los pesos (Y, kg) de una muestra de 6 hombres adultos. Para cada estatura fijada previamente se observó el peso de una persona seleccionada de entre el grupo con dicha estatura, resultando: X: estatura Y: peso Ingresar datos: X: estatura en L4 Y: peso en L5 15
18 STAT TEST opción E Calculate ENTER Para elegir L4 y L5 2nd [ LIST ] ANALISIS DE TABLAS DE CONTINGENCIA Una muestra de 500 niños de cierta escuela primaria, se clasificó en forma cruzada respecto a su estado de nutrición y el desempeño académico. Los resultados se muestran en la tabla Estado de nutrición Desempeño académico Pobre Bueno Total Malo Satisfactorio Total Los investigadores desean saber si se puede concluir que existe una relación entre el estado de nutrición y el desempeño académico. Sea α =
19 Ingresar datos: ubicar los datos de la tabla en la matriz A 2nd [ MATRIX ] EDIT opción ENTER STAT TEST opción C Calculate ENTER Ejercicio En una encuesta realizado a 4190 adultos de tres ciudades en Estados Unidos, se hizo la siguiente pregunta: Cree usted que E.U. debe limitar las importaciones de países asiáticos, para proteger la industria nacional?. Los resultados fueron: Ciudad A Ciudad B Ciudad C SI NO No está seguro La distribución de la respuesta, es la misma en las tres ciudades? 17
20 ANALISIS DE VARIANZA (ANOVA) En un estudio para comparar el rendimiento promedio de recorrido (Km/litro) de tres marcas de automóviles. Siete conductores fueron asignados a la marca A, siete a la marca B y seis a la marca C. Los resultados son: Marca A Marca B Marca C Ingresar datos: en las listas L1, L2, L3 STAT TEST opción F ENTER Resultados: 18
21 Los resultados obtenidos se presentan en la siguiente tabla de Análisis de Varianza. ANOVA Fuentes Grados de libertad Suma de Cuadrados Cuadrados Medios F calculado p value Grupos Error
Algunas Distribuciones de Probabilidad
Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los
Problemas. Variables Aleatorias. Modelos de Probabilidad
Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad
12 Las distribuciones binomial y normal
Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:
DISTRIBUCIÓN DE LA MEDIA MUESTRAL. b) Las medias muestrales de tamaño n se distribuyen según la normal
1 DISTRIBUCIÓN DE LA MEDIA MUESTRAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles. 1. Considérese una población en la
SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática
SEMINARIOS (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática Seminario de Estadística Descriptiva Unidimensional y Bidimensional 1. Se ha realizado un control de calidad en
INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA
1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98
INFERENCIA ESTADÍSTICA
Capítulo 4 INFERENCIA ESTADÍSTICA 4.1. Introducción Inferir: Sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. La estadística, ciencia o rama de las Matemáticas que se
Tema 1: Test de Distribuciones de Probabilidad
Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).
Statgraphics Centurión
Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que
Clase 5: Variables Aleatorias y Distribuciones de Probabilidad
Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una
DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS
DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios
Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:
Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial
DESCRIPCIÓN ESPECÍFICA
DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad
www.bvbusiness-school.com
Gráficos de Control de Shewart www.bvbusiness-school.com GRÁFICOS DE CONTROL DE SHEWART Una de las herramientas estadísticas más importantes en el Control Estadístico de Procesos son los Gráficos de Control.
Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página):
Univ. de Alcalá. Estadística 2014-15 Dpto. de Física y Matemáticas Grado en Biología. Examen final. Miércoles, 21 de Enero de 2015. Apellidos: Nombre: INSTRUCCIONES (LEER ATENTAMENTE). Puedes descargar
2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p
Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA
ESTIMACION POR INTERVALOS
ESTIMACION POR INTERVALOS En muchas situaciones, una estimación puntual no proporciona información suficiente sobre el parámetro. Por esta razón se construyen intervalos de confianza en donde el parámetro
5. DISTRIBUCIONES DE PROBABILIDADES
5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable
Se toma una muestra aleatoria de diez personas de una población. Se ha estimado de experiencias anteriores que la característica en estudio se
Se toma una muestra aleatoria de diez personas de una población. Se ha estimado de experiencias anteriores que la característica en estudio se distribuye según una variable aleatoria normal de media 167
Métodos y Diseños utilizados en Psicología
Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos
6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0)
1. La rueda de una ruleta se divide en 25 sectores de igual área que se enumeran del 1 al 25. Encuentra una fórmula para la distribución de probabilidades de la v.a. X que representa el número obtenido
INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA
1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Página 75 REFLEXIONA Y RESUELVE Lanzamiento de varios dados Comprueba en la tabla anterior ue: DESV. TÍPICA PARA n DADOS n = 8 1,71 1,1 n = 3 8 1,71 3 0,98
Problemas resueltos del Tema 3.
Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:
Curso de Estadística no-paramétrica
Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació
RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.
RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.000 horas, con una cuasidesviación típica muestral de 200 horas. Se supone que
Estimación. Intervalos de Confianza para la Media y para las Proporciones
Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo
RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD
1 UNIVERSIDAD DE CASTILLA-LA MANCHA Facultad de Químicas. RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD Ejercicio 1º.- Se lanzan dos monedas y un dado. Se pide: 1) Describir
15 Distribuciones continuas. La distribución normal
Distribuciones continuas. La distribución normal ACTIVIDADES INICIALES Solucionario.I. Representa la función valor absoluto: x si x 0 y x x si x 0 Y O X.II. Representa la función: 2x 3 si x f(x) si x 4
Ejercicios distribuciones discretas probabilidad
Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan
Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras
Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales
CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS
CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-4492-6252 Fax:
Tema 5. Variables aleatorias discretas
Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD EJERCICIOS 5 Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Una compañía de seguros utiliza la
Tema 5: Análisis conjunto y teoremas límite
Facultad de Economía y Empresa 1 Tema 5: Análisis conjunto y teoremas límite COCHES Se han analizado conjuntamente las variables número de hijos de cada familia (X) y número de coches por familia (Y),
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS ALIMENTARIOS
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS ALIMENTARIOS HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Estadística para el control de procesos 2. Competencias a la que
RESPUESTAS: c) $75.00. 166) a) 70,000 litros b) 11,547 litros 167) a) 12.5 litros b) 1 3
170) Suponte que los resultados de un examen son una variable normal con media 78 y varianza 36 a) Cuál es la probabilidad que una persona que presenta el examen obtenga una calificación mayor que 7? b)
EXPERIMENTACIÓN. Eduardo Jiménez Marqués
EXPERIMENTACIÓN Eduardo Jiménez Marqués 1 CONTENIDO: 1. Experimentación...3 1.1 Concepto...3 1. Definición...4 1.3 Dificultad...4 1.4 Ventaja...5 1.5 Planificación...5 1.6 Aplicaciones...5 1.7 Metodología...6
Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS
Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número
DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS
DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada
Práctica 3. Distribuciones de probabilidad
Práctica 3. Distribuciones de probabilidad Estadística Facultad de Física Objetivos Distribuciones Representaciones gráficas Ejercicios Aplicaciones 1 Introducción En esta práctica utilizaremos una herramienta
Ejercicios de inferencia estadística
1. Una población consiste en las edades de los niños en una familia de cuatro hijos. Estas edades son: x 1 = años, x = 4años, x 3 = 6años, x 4 = 8años. (a) Determina la media y la desviación típica de
Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel 1
Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento
MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.
MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA N o 1: Estadística y Probabilidades Profesor: Hugo S. Salinas. Primer Semestre 2011 1. Señalar
Clase 8: Distribuciones Muestrales
Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas
Cálculo de probabilidades
Cálculo de probabilidades 1. Sean A y B dos sucesos de un espacio muestral, con probabilidades P(A)=0.3, P(B)=0.7. Indica si son verdaderas o falsas las siguientes afirmaciones: a) Los sucesos A y B son
REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.
REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer
Problemas. Intervalos de Confianza y Contrastes de Hipótesis
Problemas. Intervalos de Confianza y Contrastes de Hipótesis Ejemplos resueltos y propuestos Intervalos de Confianza Variable Nomal en la población Se selecciona una muestra de tamaño n de una población
CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO
Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal
Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción
V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA 5.1 Introducción En este capítulo nos ocuparemos de la estimación de caracteristicas de la población a partir de datos. Las caracteristicas poblacionales
Estadística aplicada y modelización. 10 de septiembre de 2005
Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla
TALLER N 5 DE ESTADÍSTICA
UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS PEDAGOGÍA EN MATEMÁTICA Y COMPUTACIÓN TALLER N 5 DE ESTADÍSTICA Integrante 1 : Victor Córdova Cornejo (heibubu@hotmail.com) Integrante 2 : Rodrigo
Síntesis Numérica de una Variable
Relación de problemas 2 Síntesis Numérica de una Variable Estadística 1. En siete momentos del día se observa el número de clientes que hay en un negocio, anotando: 2, 5, 2, 7, 3, 4, 9. Calcular e interpretar
Modelos de distribuciones discretas y continuas
Modelos de distribuciones discretas y continuas Discretas En la versión actual de Rcdmr podemos encontrar las distribuciones discretas estudiadas en este curso y para cada una de ellas están disponibles
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo
7.6 Comparación entre dos medias Poblacionales usando muestras independientes
7.6 Comparación entre dos medias Poblacionales usando muestras independientes Supongamos que se tiene dos poblaciones distribuidas normalmente con medias desconocidas µ y µ, respectivamente. Se puede aplicar
Modelos de distribuciones discretas
Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,
ANÁLISIS Y PROPUESTA PARA LA ENSEÑANZA DE LA COMPUTACIÓN A LOS ESTUDIANTES DE NIVEL MEDIO DE LOS COLEGIOS FISCALES DE GUAYAQUIL
ANÁLISIS Y PROPUESTA PARA LA ENSEÑANZA DE LA COMPUTACIÓN A LOS ESTUDIANTES DE NIVEL MEDIO DE LOS COLEGIOS FISCALES DE GUAYAQUIL Hugo Renán Ruíz 1, Luis Rodríguez Ojeda 1 Ingeniero en Estadística Informática
UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)
PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales
Problemas de Probabilidad resueltos.
Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.
PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) PRUEBAS NO PARAMÉTRICAS F(X) es la función de distribución que hipotetizamos. Fs(X) es la probabilidad o proporción teórica de
T. 5 Inferencia estadística acerca de la relación entre variables
T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas
Distribuciones discretas. Distribución Binomial
Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.
FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES ANÁLISIS DESCRIPTIVO DE DATOS ECONÓMICOS Examen final. 18-02 - 1995
FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES ANÁLISIS DESCRIPTIVO DE DATOS ECONÓMICOS Examen final. 18-02 - 1995 Apellidos Nombre DNI Grupo Oficial / Libre PRIMER PARCIAL 1) Momentos centrales o respecto
Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos
Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible
Capítulo 7: Distribuciones muestrales
Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)
10. DISEÑOS EXPERIMENTALES
10. DISEÑOS EXPERIMENTALES Dr. Edgar Acuña http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ Diseños Experimentales de Clasificación Simple En un diseño experimental
Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas)
Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas) Ejercicio 4 1 Una persona vende automóviles nuevos para una empresa. Generalmente negocia el mayor número de autos los sábados. Ha establecido
Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2
Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación
TEMA 4: Introducción al Control Estadístico de Procesos
TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción
TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1
TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 rafael.dearce@uam.es El objeto de las tablas de contingencia es extraer información de cruce entre dos
UNIVERSIDAD COMPLUTENSE DE MADRID
TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro
Departamento de Matemática Aplicada a la I.T. de Telecomunicación
Departamento de Matemática Aplicada a la I.T. de Telecomunicación EXAMEN RESUELTO DE ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO / FECHA: de Enero de Duración del examen: 3 horas Fecha publicación
Universidad de Zaragoza
Nº L.E. Nº L.A.D.E. PUBLICACIONES DE 2º CURSO SECCIÓN: L.A.D.E y L.E. ASIGNATURA: ESTADÍSTICA II TEMA: GRUPO: Problemas de muestreo TODOS DEPARTAMENTO DE MÉTODOS ESTADÍSTICOS Curso Académico 2004/2005
DISTRIBUCIONES DE VARIABLE CONTINUA
UNIDAD 11 DISTRIBUCIONES DE VARIABLE CONTINUA Página 260 1. Los trenes de una cierta línea de cercanías pasan cada 20 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó el último. La medida
Especialización en PLANEACIÓN, DESARROLLO Y ADMINISTRACIÓN DE LA INVESTIGACIÓN
Especialización en PLANEACIÓN, DESARROLLO Y ADMINISTRACIÓN DE LA INVESTIGACIÓN Curso: POBLACIÓN DE ESTUDIO Y MUESTRA Estrategia de trabajo. MODULO II. Elementos de muestreo Contextualización Este módulo
En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10).
MODELOS DE PROBABILIDAD En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). (a) Si tomamos dos manzanos al azar, cuál
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,
Tests de hipótesis estadísticas
Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para
Números aleatorios. Contenidos
Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método
Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad
2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,
Carrera: MCM - 0531. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Mecánica MCM - 0531 3 2 8 2.- HISTORIA DEL
CORRELACIÓN Y PREDICIÓN
CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente
CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de
CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.
Estadística aplicada y modelización. 15 de junio de 2005
Estadística aplicada y modelización. 15 de junio de 2005 SOLUCIÓN MODELO A 1. En una población de fumadores se quiere examinar la relación entre el número de cigarrillos que consumen diariamente y el número
TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS
TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS 1.1 Variables aleatorias Considera el experimento aleatorio consistente en lanzar dos monedas. El espacio muestral de
PRUEBAS PARAMETRICAS Y PRUEBAS NO PARAMETRICAS. Juan José Hernández Ocaña
PRUEBAS PARAMETRICAS Los métodos paramétricos se basan en el muestreo de una población con parámetros específicos, como la media poblacional, la desviación estándar o la proporción p. Además deben de reunir
1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde
Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)
Facultad de Ciencias Económicas y Empresariales - Grado en Economía Problemas Estadística I Curso 2015-2016 CAPÍTULO 1
Facultad de Ciencias Económicas y Empresariales - Grado en Economía Problemas Estadística I Curso 2015-2016 Problema 1.1 CAPÍTULO 1 Dados los siguientes contextos, indicar la población, la variable objeto
ESTIMACIÓN. puntual y por intervalo
ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada
Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.
2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:
MANUAL DE LA ACADEMIA Aplicación de Conceptos y Herramientas Esenciales de Estadística Marzo 2009
UNIVERSIDAD DE PUERTO RICO RECINTO DE RIO PIEDRAS FACULTAD DE ADMINISTRACION DE EMPRESAS Instituto de Estadística y Sistemas Computadorizados de Información MANUAL DE LA ACADEMIA Aplicación de Conceptos
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).