PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes.
- Adrián Cordero Montero
- hace 3 años
- Vistas:
Transcripción
1 PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes. 1.- (*) En una carrera en la que participan diez caballos de cuántas maneras diferentes se pueden dar los cuatro primeros lugares? 2.- Una empresa de reciente creación encarga a un diseñador gráfico la elaboración del su logotipo, indicando que ha de seleccionar exactamente tres colores de una lista de seis. Cuántos grupos tienen para elegir el diseñador? 3.- (*) Cuántas palabras diferentes, de cuatro letras, se pueden formar con la palabra byte? 4.- De cuantas maneras diferentes se pueden elegir el director y el subdirector de un departamento formado por 50 miembros? 5.- Con once empleados cuántos comités de empresa de cinco personas se pueden formar? 6.- Cuántas maneras distintas hay de colocar quince libros diferentes en una estantería si queremos que el de Probabilidades esté el primero y el de Estadística en el tercero? 7.- Cuántos caracteres diferentes podemos formar utilizando a lo sumo a tres símbolos de los utilizados en el alfabeto Morse? 8.- Un supermercado organiza una rifa con un premio de una botella de cava para todas las papeletas que tengan las dos últimas cifras iguales a las correspondientes dos últimas cifras del número premiado en el sorteo de Navidad. Supongamos que todos los décimos tienen cuatro cifras y que existe un único décimo de cada numeración Cuántas botellas repartirá el supermercado? 9.- Cuántas palabras diferentes podemos formar con todas las letras de la palabra estadística? 10.- (*) En una tienda de regalos hay relojes de arena con cubetas de colores, y no hay diferencia alguna entre las dos cubetas que forman cada reloj. Si hay cuatro colores posibles y el color de los dos recipientes puede coincidir cuántos modelos de reloj de arena puede ofrecer el establecimiento? 11.- En una partida de parchís gana aquel jugador que consigue alcanzar antes consus 1 Sol.: Sol.: 20 3 Sol.: 24 4 Sol.: Sol.: Sol.: Sol.: 14 8 Sol.: Sol.: Sol.: 10 1
2 cuatro fichas la llegada. Si hay cuatro jugadores y la partida continua hasta que todos han completado el recorrido cuántos órdenes de llegadas hay para la dieciséis fichas? 12.- Se han de repartir cinco becas entre diez españoles y seis extranjeros, de manera que se den tres a españoles y dos a extranjeros De cuántas maneras se puede hacer el reparto? 13.- Cuantas fichas tiene un dominó? 14.- (*) Calcular la probabilidad de que al lanzar a la vez 5 dados se obtenga: a) repóker (5 resultados iguales); b) póker (4 resultados iguales); c) full (3 resultados iguales y los otros distintos pero iguales entre si); d) trio (3 resultados iguales y los otros dos diferentes); e) doble pareja (2 resultados iguales, otros 2 iguales y diferentes de los anteriores y el restante diferente ); f) pareja (exactamente 2 resultados iguales); g) nada (5 resultados distintos) (*) Tenemos 12 radios de las que 5 son defectuosas. Elegimos 3 radios al azar. Cuál es la probabilidad de que sólo una de las 3 sea defectuosa? 16.- Lanzamos al aire 6 dados. a) Cuál es la probabilidad de que todos ellos den resultados distintos? b) Cuál es la probabilidad de obtener 3 parejas? 17.- Supongamos que en una empresa de fabricación de componentes electrónicos se sabe que en un lote de 550 almacenados el 2% son defectuosos Cuál es la probabilidad de encontrar 2 de defectuosos si cogemos de forma equiprobable 25? 18.- Si mezclamos suficientemente una baraja de 52 cartas cuál es la probabilidad de que los 4 ases queden colocados consecutivamente? 11 Sol.: Sol.: Sol.: Sol.: a) 6/6 5 ; b) 150/6 5 ;c) 300/6 5 ; d) 1200/6 5 ; e) 1800/6 5 ; f) 3600/6 5 ; g) 720/ Sol.: 21/44 16 Sol.: a)120/6 5 ; b) 300/ Sol.: Sol.: 24/
3 19.- Una forma de incrementar la fiabilidad de un sistema es la introducción de una copia de los componentes en una configuración paralela. Supongamos que la N:A.S.A. quiere un vuelo con una probabilidad no inferior a de que el transbordador espacial entre en órbita alrededor de la Tierra con éxito. Cuántos motores se han de montar en paralelo para que se alcance esta fiabilidad, si se sabe que la probabilidad de que cada uno de los motores funcione adecuadamente es 0.95? Suponer que los motores funcionan de manera independiente entre si (*) Cuál es la probabilidad de que entre n personas, que no han nacido el 29 de febrero, haya como a mínimo dos que hayan nacido el mismo día del año? (no necesariamente del mismo año). Calcular la probabilidad para los siguientes valores de n : 10, 15, 22, 23, 30, 40, 50, Cuatro cartas numeradas de 1 a 4 están colocadas boca abajo sobre una mesa. Una persona, supuestamente clarividente, irá adivinando los valores de las 4 cartas una a una. Si suponemos que es un farsante y que lo que hace es decir los cuatro números al azar cuál es la probabilidad de que acierte como mínimo una? (Obviamente, no repite ningún número) 22.- En una lotería hay 500 billetes y 5 premios. Si una persona compra 10 billetes cuál es la probabilidad de obtener?: a) el primer premio? b) como mínimo un premio? c) exactamente un premio? 23.- Se elige de forma equiprobable un número del 1 al Calcular la probabilidad de que sea múltiplo de 2 o de 3 o de 4 o de (*) Si elegimos un número de entre los 120 primeros enteros positivos cuál es la probabilidad de que sea múltiplo de 3, no sea divisible por 5, y sea divisible por 4 o por 6? 25.- Una cuarta parte de la población ha sido vacunada contra una enfermedad contagiosa. Durante una epidemia, se observa que de uno de entre cada cuatro enfermos ha sido vacunado. a) Ha tenido alguna eficacia la vacuna? b) Por otra parte, se sabe que hay un enfermo entre cada 12 personas vacunadas Cuál es la probabilidad de que esté enferma una persona que no se ha vacunado? 19 Sol.: 4 20 Sol.: 0.12; 0.25; 0.48; 0.51; 0.71; 0.89; 0.97; Sol.: 15/24 22 Sol.: 0.02; 0.096; Sol.: Sol.: 2/15 25 Sol.: a) Sí; b) 1/9 3
4 26.- La probabilidad de que un estudiante acabe una carrera determinada es 0.4. Dado un grupo de 5 estudiantes de esta carrera, calcular la probabilidad de que: a) ninguno acabe la carrera, b) sólo uno acabe la carrera, c) al menos dos acaben la carrera; d) todos la acaben Un mensaje se ha codificado con un alfabeto de dos símbolos A y B para poder transmitirse a través de un canal de comunicación. La codificación es tal que A aparece el doble de veces que B en el mensaje codificado. El ruido del canal es tal que cuando A se transmite, se recibe A con una probabilidad de 0.8 y B con una probabilidad de 0.2; cuando se transmite B se recibe B con una probabilidad de 0.7 y se recibe A con probabilidad 0.3. a) Cuál es la frecuencia relativa de A en el mensaje recibido? b) Si última letra del mensaje recibido es una A cuál es la probabilidad de que se haya enviado una A? 28.- (*) En una ciudad se publican 3 diarios A, B y C. El 30% de la población lee A, el 20% lee B y el 15% lee C; el 12% lee A y B, el 9% lee A y C, y el 6% lee B y C; finalmente, el 3% lee A, B y C. Calcular: a) El porcentaje de gente que lee al menos uno de los tres diarios. b) El porcentaje de gente que sólo lee A. c) El porcentaje de gente que lee B o C, pero no A. d) El porcentaje de gente que lee A o no lee ni B ni C Supongamos que en un dado la probabilidad de cada una de sus seis caras es proporcional al número inscrito en ella. Calcular la probabilidad de obtener un número par (*) En una reunión, n personas (n 3) lazan una moneda al aire. Si una de ellas da diferente de todas las otras, su propietario paga una ronda Cuál es la probabilidad de que pase esto? 31.- Un matrimonio planifica su descendencia considerando los siguientes esquemas (se supone que tener una varón o una hembra es equiprobable): 26 Sol.: a) ; b) ; c) ; d) Sol.: a) 0.633; b) Sol.: a) 0.41 ; b) 0.12; c) 0.11; d) Sol.: 4/7 30 Sol.: (n ( 1 2) n 1) 4
5 Esq. A) Tener 3 varones. Esq. B) Tener varones hasta que nazca la primera hembra, o ya tengan tres niños (lo que pase primero). Esq. C) Tener niños hasta que tengan una pareja de ambos sexos, o ya tengan tres niños (lo que pase primero). Sea B i el suceso han nacido i niños (i = 1, 2, 3) y C el suceso tener más varones que hembras. 1) Calcular p(b 1 ) y p(c) en cada uno de los tres esquemas. 2) Calcular p(b 2 ) y p(b 3 ) en cada uno de los tres esquemas. 3) Sea E el suceso que la familia completa tenga igual número de varones que de hembras. Encontrar p(e) en cada uno de los tres esquemas Un comerciante ha de viajar en avión de Bangkok a Bagdad. Preocupado, pide a la compañía aérea cuál es la probabilidad de que haya como mínimo una bomba en el avión y le dicen que es de 0.1. Más preocupado aún pide cuál es la probabilidad de que haya como mínimo dos bombas y le dicen que es Más tranquilo, decide llevar una bomba en su equipaje. Haciendo las suposiciones adicionales oportunas qué valoración estadística podemos hacer de su decisión? 33.- Dos sistemas con cuatro componentes independientes con fiabilidades respectivas p 1, p 2, p 3 y p 4 se configuran de las dos maneras siguientes: En el sistema A, la combinación en serie de los components 1 y 2 se configura en paralelo con la combinación en serie de los componentes 3 y 4; en el sistema B, la combinación en paralelo de 1 y 3 se configura en serie con la combinación en paralelo de 2 y 4. Determinar el sistema más fiable (*) Si un sistema que consiste en tres components independientes con la misma fiabilidad (p 1 = p 2 = p 3 ) tiene una fiabilidad de 0.8, determinar p 1 en los siguientes casos: a) el componente 3 está configurado en serie con la combinación en paralelo 1 y 2. b) el componente 3 está configurado en paralelo con la combinación en serie de 1 y Sol.: a) (p(b 1 ) = 3/8, 1/4, 5/8; p(c) = 1/2, 1/2, 1/4); b) (p(b 2 ) = 3/8, 1/8, 1/8; p(b 3 ) = 1/8, 1/8, 1/8); c) (0, 1/4, 1/2). 32 Sol.: Decisión absurda por sentido común y estadísticamente. 33 Sol.: B 34 Sol.: a) 0.825; b)
1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en
1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares
Probabilidad. Relación de problemas 5
Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS 15 Y 16 1. De una urna con 7 bolas blancas y 14 negras extraemos una. Cuál es la probabilidad de
PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2
PROBABILIDAD 1. Blanca y Alfredo escriben, al azar, una vocal cada uno en papeles distintos. Determine el espacio muestral asociado al experimento. Calcule la probabilidad de que no escriban la misma vocal.
a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales
1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden
Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática
1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos
13. II) Que salga una pinta del trébol es más probable que salga una pinta de diamante. III) La probabilidad de que salga un AS de trébol es 1/13.
GUIA UNO P.S.U. PROBABILIDADES ) Al lanzar un dado común (seis caras), cuál es la probabilidad de obtener un número que no sea primo? A) 2 5) Al lanzar dos dados no cargados, cuál es la probabilidad de
Práctico 4. Probabilidad
Práctico 4. Probabilidad Problema Calcular la probabilidad que si se lanzan dos dados la suma de los resultados obtenidos sea inferior a 9. Problema 2 Las posibilidades de apostar a pleno en la ruleta
EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO.
GUIA DE EJERCICIOS. TEMA: ESPACIO MUESTRAL-PROBABILIDADES-LEY DE LOS GRANDES NUMEROS. MONTOYA.- CONCEPTOS PREVIOS. EQUIPROBABILIDAD: CUANDO DOS O MAS EVENTOS TIENEN LA MISMA PROBABILIDAD DE OCURRIR. SUCESO
Elementos de Combinatoria
Elementos de Combinatoria 1 Introducción Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte
PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.
Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad
Ejercicios distribuciones discretas probabilidad
Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan
EJERCICIOS DE PROBABILIDAD
EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una
En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10).
MODELOS DE PROBABILIDAD En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). (a) Si tomamos dos manzanos al azar, cuál
Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios
1. En un examen teórico para la obtención del permiso de conducir hay 14 preguntas sobre normas, 12 sobre señales y 8 sobre educación vial. Si se eligen dos preguntas al azar. a) Cuál es la probabilidad
IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008
Probabilidad 2008 EJERCICIO A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa
EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30
EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200
MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.
MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido
Manejo de la Información
Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado
SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS
1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC
Algunas Distribuciones de Probabilidad
Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los
Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]
Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno
Mª Cruz González Página 1
SELECTIVIDAD Probabilidad. Junio 00 (Opc. Se tiene tres cajas iguales. La primera contiene bolas blancas y 4 negras; la segunda contiene 5 bolas negras y, la tercera, 4 blancas y negras. a) Si se elige
Problemas de Probabilidad Soluciones
Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.
(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.
(1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,
COLOMO R e g l a m e n t o
COLOMO Reglamento C O L O M O Rojo, Naranja, amarillo, azul, púrpura Todo el mundo conoce los colores del arco iris. Estos colores son las estrellas de todos los juegos incluidos en Colomo. En estas reglas
PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.
ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos
TEMA 10 CÁLCULO DE PROBABILIDADES
Ejercicios Selectividad Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES COMBINATORIA EJERCICIO 1 : Septiembre 03-04. Obligatoria (1 pto) Un fabricante
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral
Introducción a la Teoría de Probabilidad
Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento
RELOJ PRIMIGENIO. Un juego de apuestas, faroleo y press your luck de 3 a 5 jugadores.
RELOJ PRIMIGENIO Un juego de apuestas, faroleo y press your luck de 3 a 5 jugadores. - Materiales 1 Baraja Primigenia Estas reglas o una imagen para tener las cartas de referencia con las que se forma
Un juego de cartas: Las siete y media
Un juego de cartas: Las siete y media Paula Lagares Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS
FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS ESTADÍSTICA I Relación de Ejercicios nº 4 PROBABILIDAD Curso 007-008 1) Describir el espacio muestral
2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p
Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA
LAS PROBABILIDADES Y EL SENTIDO COMÚN
LAS PROBABILIDADES Y EL SENTIDO COMÚN Existen leyes del azar? Nuestro sentido común pareciera decirnos que el azar y las leyes son conceptos contradictorios. Si algo sucede al azar, es porque no hay leyes
EJERCICIOS DE PROBABILIDAD (1ºA)
EJERCICIOS DE PROBABILIDAD (1ºA) 5) 6) Una bolsa contiene bolas negras y rojas. Se extraen sucesivamente tres bolas. Obtener: a) El espacio muestral. b) El suceso A = extraer tres bolas del mismo color.
Práctica No. 1. Materia: Estadística II Docente: Lic.Emma Mancilla Semestre : Sexto A1. Septiembre de 2011
Práctica No. 1 Materia: Estadística II Docente: Lic.Emma Mancilla Semestre : Sexto A1 Septiembre de 2011 1. Repaso:Conjuntos - Cálculo combinatorio. 1. Dado el conjunto A = {6, 2, 8, 4, 3} encontrar todos
OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10.
_ 9-.qxd //7 9:7 Página 9 Divisibilidad INTRODUCCIÓN El concepto de divisibilidad requiere dominar la multiplicación, división y potenciación de números naturales. Es fundamental dedicar el tiempo necesario
IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008
Probabilidad 2008 EJERCICIO 1A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa
Curso Taller de Matemáticas Olímpicas. Principio Fundamental del Conteo
Curso Taller de Matemáticas Olímpicas Principio Fundamental del Conteo La forma más sencilla y tradicional de contar cosas suele ser con los diagramas de árbol; al final, todo se reduce a sumas y multiplicaciones.
14Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGINA 8 Pág. P RACTICA Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los
ACTIVIDADES COMBINATORIA
ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más
Ejercicios y problemas resueltos de probabilidad condicionada
Ejercicios y problemas resueltos de probabilidad condicionada 1.- Sean A y B dos sucesos aleatorios con p(a) = 1/2, p(b) = 1/3, p(a B)= 1/4. Determinar: 1 2 3 4 5 2.- Sean A y B dos sucesos aleatorios
Clase 4: Probabilidades de un evento
Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia
PROBABILIDAD CONDICIONADA
1 PROBABILIDAD CONDICIONADA La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles. 1. En un grupo de amigos el 80 % están casados.
COMBINACIONES página 29 COMBINACIONES
página 29 DEFINICIÓN: Dados n elementos, el número de conjuntos que se pueden formar con ellos, tomados der en r, se llaman combinaciones. Por ejemplo, sean cuatro elementos formar con esos cuatro elementos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad
2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,
PROBLEMAS DE PROBABILIDAD. BOLETIN IV
PROBLEMAS DE PROBABILIDAD. BOLETIN IV 1. Se considera el experimento aleatorio de lanzar un dado al aire y anotar el número de la cara superior. Hallar: a) El espacio muestral. b) El suceso A= obtener
Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010.
Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010. Dos puntos 1. Para cada una de las siguientes variables, indica si son variables aleatorias,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
BLACK JACK. BACCARAT (Light)
BLACK JACK La finalidad de este juego es tener una mano de mayor valor en puntos en total que el dealer, sin sobrepasar 21 puntos. Cada carta tiene su valor, las figuras valen 10 y el As toma el valor
Pág. 1. Formar agrupaciones
Pág. 1 Formar agrupaciones 1 a) En una urna hay una bola blanca, una roja y una negra. Las extraemos de una en una y anotamos ordenadamente los resultados. Escribe todos los posibles resultados que podemos
Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios
1. Tenemos un dado (con sus seis caras numeradas del 1 al 6), trucado en el que es dos veces mas probable que salga un número par que un número impar. a) Calcula la probabilidad de salir par y la de salir
Reglas básicas. Forma de jugar. Puntajes. Turnos. Jugada. Juegos
Reglas básicas Se utilizan 5 dados por jugador. Un jugador tira los dados y trata de formar diferentes combinaciones con ellos. Tiene tres tiros para formar su "jugada" y entre estos tiros puede mantener
2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24
2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios
Probabilidad 0.9 0.9 0.8 0.9 0.95 0.75. U. D. de Matemáticas de la ETSITGC de la U.P.M. Asignatura: Cálculo y Estadística 1
.- Obtener la probabilidad de las siguientes jugadas en una mano de 5 cartas de una baraja de 5 cartas: a) Pareja. b) Doble pareja. c) Trío. d) Escalera. e) Color. f) Full. g) Póker h) Escalera de color..-
2 3 independientes? y mutuamente excluyentes? Halla )
EJERCICIOS DE PROBABILIDAD para hacer en casa IES Jovellanos 1º BI-NS Probabilidad 1. a) Demuestre mediante un diagrama de Venn que ( A B) \ ( A C) = A ( B \ C) b) Demuestre con propiedades Booleanas que
PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular:
PARTE 1 FACTORIAL 2. 31 Calcular: PROBLEMAS PROPUESTOS i. 9!, (9)(8)(7)(6)(5)(4)(3)(2)(1) = 362880 ii. 10! (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 3628800 iii. 11! (11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 39916800
Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo.
COMBINATORIA Introducción a la Combinatoria Recuento A menudo se presenta la necesidad de calcular el número de maneras distintas en que un suceso se presenta o puede ser realizado. Otras veces es importante
LA DUALIDAD PAR-IMPAR. 1. En una reunión de 25 personas. Puede ser que cada una se salude dándose la mano con todas las demás excepto con una?
NOTAS Un sencillo principio matemático que da mucho más juego del que parece a primera vista es la simple distinción entre los números pares e impares. Conviene tener presente las siguientes propiedades,
El azar y la probabilidad. Un enfoque elemental
El azar y la probabilidad. Un enfoque elemental Experimentos al azar El azar puede percibirse fácilmente cuando se repite muchas veces una acción cuyo resultado no conocemos, como tirar dados, repartir
Distribuciones discretas. Distribución Binomial
Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD Grado 11 Taller # 13 Nivel II RESEÑA HISTORICA El concepto de Probabilidad ha evolucionado en
10. Probabilidad y. Estadística
10. Probabilidad y Estadística Ámbito científico 1. Saltos de canguro 2. Pares y nones 3. La travesía del río 4. Las tres fichas 5. Las tres ruletas 6. El dado ganador 7. El reparto 8. Lotería 9. Lotería
Juego Azar O Matemática?
Juego Azar O Matemática? Carlos Aragón Pérez Grado en Ingeniería en telecomunicaciones c.aragon@edu.uah.es Vamos a explicar las técnicas matemáticas que podremos utilizar para poder ganar en los juegos
Relación de problemas: Variables aleatorias
Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor
PROBABILIDAD ELEMENTAL
PROBABILIDAD ELEMENTAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles.. Una caja con una docena de huevos contiene dos
Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I
Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera
2. Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?. Sol: 60
COMBINATORIA 1. Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo; b) a cada chico le puede tocar más de un regalo;
PROBLEMAS DE SELECTIVIDAD. BLOQUE PROBABILIDAD
PROBLEMAS DE SELECTIVIDAD. BLOQUE PROBABILIDAD 1. Una empresa de telefonía móvil ofrece 3 tipos diferentes de tarifas, A, B y C, cifrándose en un 45%, 30% y 25% el porcentaje de clientes abonados a cada
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).
Práctica 1 El juego de los chinos
Práctica 1 El juego de los chinos Fecha de entrega: 6 de diciembre Según una teoría, el conocido como juego de los chinos nació en el año 1787 en un pequeño pueblo de León. Felipe Valdeón Triguero, un
Actividades para empezar bien el día. Preescolar. Matemáticas
Actividades para empezar bien el día Preescolar Matemáticas Armamos rompecabezas Los alumnos arman rompecabezas clásicos, modelos con el tangram y con cuadros bicolores. Disponer de material suficiente
Tema 7: Estadística y probabilidad
Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro
1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito,
1 1.4 Cálculo de Probabilidades con Métodos de Conteo Considerere un espacio muestral finito, y defina, Luego, Ω = {ω 1,..., ω n }, P ({ω i }) = p i, i = 1,..., n P (A) = ω i A p i, A Ω Ω se dice equiprobable
Unidad 14 Probabilidad
Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números
CPE (SEGUNDO CURSO) = P [T 1 ]P [T 2 ]... P [T 525,600 ] = (1 10 8 ) 525,600 = 0.9948
1/10 CPE (SEGUNDO CURSO PRÁCICA 1 SOLUCIONES (Curso 2015 2016 1. Suponiendo que los sucesos terremotos y huracanes son independientes y que en un determinado lugar la probabilidad de un terremoto durante
Actividades de ampliación
MATEMÁTICAS º SECUNDARIA CUADERNO DE ACTIVIDADES DE AMPLIACIÓN Nombre: Curso: Fecha de entrega: MATEMÁTICAS º ESO Números naturales. Divisibilidad. Explica cómo se puede calcular mentalmente cada una de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
Tema 3 Probabilidades
Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones
Reglas del juego. 2 o más jugadores
Reglas del juego 2 o más jugadores & OTROS JUEGOS DE DADOS La generala Real es una versión nueva de la Generala tradicional, enriquecida en algunas variantes que la convierten en un excelentejuego familiar.
Relación de Problemas. Modelos de Probabilidad
Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas
Unidad Didáctica. Códigos Binarios
Unidad Didáctica Códigos Binarios Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo
Combinatoria: factorial y números combinatorios.
Combinatoria: factorial y números combinatorios. 1. Realiza las siguientes actividades en tu cuaderno 2. Una vez resueltas, utiliza las escenas de la página para comprobar los resultados. 3. Para el manejo
Ejercicios Resueltos Combinatoria. 1. De cuántas maneras pueden sentarse 10 personas en un banco si hay 4 sitios disponibles?
Ejercicios Resueltos Combinatoria 1. De cuántas maneras pueden sentarse 10 personas en un banco si hay sitios disponibles? Nótese que importa el orden en que se sienten las personas, ya que los cuatro
Tema 11 Probabilidad Matemáticas B 4º ESO 1
Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
Tema 10 Combinatoria Matemáticas B 4º ESO 1
Tema 10 Combinatoria Matemáticas B 4º ESO 1 TEMA 10 COMBINATORIA EJERCICIO 1 : Con las cifras 1, 3, 4, 5 y 6, cuántos números de cuatro cifras distintas se podrán formar de modo que acaben en cifra par?
ANALISIS COMBINATORIO.
ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si un suceso puede tener lugar de m maneras distintas y cuando ocurre una de ellas se puede realizar otro suceso inmediatamente de n formas diferentes, ambos
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página PACTICA Se hace girar la flecha y se observa sobre qué número se detiene. Calcula las probabilidades de los siguientes sucesos: a) Obtener un número par. b) Obtener un número primo. c) Obtener
Problemas de Conteo. 1. Problemas
Problemas de Conteo 1. Problemas 1. En un torneo de básquetbol compiten 16 equipos. En cada ronda los equipos se dividen en grupos de 4. En cada grupo cada equipo juega una vez contra cada uno de los equipos
Material de juego. Objetivo del juego. 2-8 7x Pavillon 3-9 7x Serail 4-10 9x Arkaden 5-11 9x Gemächer 6-12 11x Garten 7-13 11x Turm
Un juego de Dirk Henn para 2 6 personas Los mejores constructores de toda Europa y los países árabes quieren dar pruebas de su habilidad artística. Forme usted la mejor plantilla de trabajadores de la
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)
Juegos para desarrollar el sentido numérico
8 Juegos para desarrollar el sentido numérico Sentido numérico 174 Materiales para Apoyar la Práctica Educativa 8. Juegos para desarrollar el sentido numérico Los juegos representan una fuente inagotable
Introducción a la Probabilidad
Probability is too important to be left to the experts R. Hamming Libros de Texto 1. The Art of Probability for Scientists and Engineers, Richard W. Hamming, WestView Press, 1991 2. Introduction to Probability